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SUMMARY

The time evolution of a line puff, a turbulent non-buoyant element with significant momentum, is studied
using the renormalization group (RNG) k–e model. The numerical results show that the puff motion is
characterized by a vortex pair flow; the computed flow details and scalar mixing characteristics can be
described by self-similar relations beyond a dimensionless time of around 30. The added mass coefficient
of the puff motion is found to be approximately unity. The predicted puff flow and mixing rate are
substantially similar to those obtained from the standard k–e model and are well supported by
experimental data. The computed scalar field reveals significant secondary concentration peaks trailing
behind in the wake of the puff. The present results suggest that the overall mixing rate of a puff is
primarily determined by the large-scale motion and that streamline curvature probably plays a minor
role. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: Puffs and thermals; turbulence modelling; jets and plumes; environmental fluid mechanics; vortex flow;
added mass.

1. INTRODUCTION

Puff flow is recognized as one of the fundamental phenomena in environmental fluid
mechanics [1]. It is often reasoned that the flow in the vertical section of a bent-over jet in
crossflow is similar to that of a line puff [1–3]. In an early experimental study [4] the observed
puff spreading rate, measured by the ratio of the puff front location to the maximum
horizontal radius, exhibited great scatter, differing from that of line thermals by a factor of
two [1]. Little quantitative detail on the flow was given and the passive scalar field was not
studied. Subsequently, visual trajectory and limited tracer concentration measurements in the
bent-over phase of a momentum-dominated buoyant jet in crossflow have been made [5,6].
However, partly owing to the difficulty of isolating such an asymptotic flow regime, the
measured dilution rates also exhibited considerable scatter. Later, the bent-over jet in crossflow
was treated analytically by Yih [7], assuming a constant puff velocity component and negligible
diffusion in the direction of crossflow. Employing Prandtl’s free shear layer model for
turbulence closure, a self-similar solution was derived for the asymptotic stage; a two-term
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approximation of the series solution was given. Although the mixing process was not studied,
the flow field was illustrated for a value of dimensionless eddy viscosity for which the
approximation is valid. More recently, the puff problem was studied by numerical simulation
of the flow and mixing using the standard two-equation k–e model as a first approximation
and by experimental measurement of the scalar concentration field in an advected line puff [3].
The numerical study revealed a loss of initial impulse due to pressure interaction; the
associated added mass coefficient was found to be approximately unity. From the results
therein it can be shown that the value adopted in Yih’s analysis is unrealistically small (by a
factor of 50).

The stream function contours obtained by the standard k–e model [3] (henceforth referred
to as the LRW study) show clearly a vortex pair flow and the existence of regions with high
strain rate in the puff. As is well known, the standard k–e model has one important
shortcoming, namely that a spuriously high generation rate of turbulence energy can be
predicted around points or regions of high strain rate. This excess of turbulence energy creates
high levels of turbulent viscosity. As the spurious turbulence energy is advected downstream in
the rear of the puff, the high turbulent viscosity may overpredict mixing and suppress related
flow details. To explore further the effect of alternative turbulence models on puff mixing, we
study herein the time evolution of a line puff by employing the renormalization group (RNG)
model. Building on the LRW study, our objective is to study (i) the effect of streamline
curvature (high strain rate) on the overall puff flow and mixing characteristics and (ii) the
sensitivity of some flow details, in particular the trailing vorticity in the puff rear, to an
alternative turbulence model hypothesis.

We perform a numerical experiment on a turbulent line puff in very much the same way as
if one were doing a laboratory experiment. A finite momentum is imparted to a two-dimen-
sional marked patch of incompressible fluid and the mixing of such a line puff with the
otherwise stagnant surrounding fluid is investigated. Within the eddy viscosity approximation
the two-equation RNG model is adopted to solve for the turbulence kinetic energy and its
dissipation rate. The numerical solutions are then compared with experimental data and
discussed.

Figure 1. Turbulent line momentum puff: (a) numerical experiment on a line puff in an incompressible fluid—an
initial impulse is applied in the positive z-direction to the marked square patch (of length L0) inside a water tank; (b)

definition of puff front and radius
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Figure 2. Initial flow generated at t*=0.5: (a) velocity field—maximum velocity magnitude is 0.724 m s−1; (b)
vorticity contours—all 24 equally spaced contours are concentrated into two kernels. (c) Pressure field p* at

t*=0.5—maximum and minimum values are 0.040 and −0.947 respectively

2. FORMULATION AND THEORY

2.1. Numerical experiment

Figure 1(a) shows a volume of water initially at rest in a tank of width B and H. At time
t=0 a significant impulse M0 in the vertical (z) direction is applied to a square patch of fluid
(of length L0) initially labelled at uniform passive scalar concentration C0 and located
sufficiently far away from the solid boundaries. The momentum source gives rise to significant
vorticity and a turbulent mass of fluid which is advected in the direction of the imparted
momentum while mixing with the ambient fluid. The motion and characteristics of this puff
(the ‘coloured’ patch) (Figure 1(b)) are investigated.

In all the results reported herein, the following parameters are adopted: B=1.2 m, H=0.9
m, M0=0.001712 m3 s−1, L0=0.04 m. The impulse is applied on the domain D0= (yl0, yr0)×
(zb0, zf0)= (−0.02, 0.02)× (0.245, 0.285). Both the tank dimensions and initial puff size are
comparable with those of previous experiments on line thermals and puffs.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 217–234 (1998)
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2.2. Go6erning equations

We take the Reynolds-averaged equations for constant-density incompressible flow,
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where Ui is the fluid velocity in the y- or z-direction, r is the density, p is the dynamic pressure
and tij is the stress tensor, equal to the sum of the viscous and Reynolds stresses. The eddy
viscosity model (Boussinesq hypothesis) provides the following expression for the stresses:
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where the effective viscosity neff is equal to the sum of the molecular viscosity n and the
turbulent viscosity nt, i.e.

neff=n+nt. (4)

The RNG k–e model [8] adopts the following relations for turbulence closure:
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where Cm=0.0845, k is the turbulence kinetic energy (TKE), e is referred to as the dissipation
rate (DR) of k and ap is the inverse Prandtl number for turbulent transport as computed via
the equation)ap−1.3929
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The rate-of-strain term R is given by
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where h=Sk/e, h0=4.38 and S2=2SijSij is the modulus of the rate-of-strain tensor expressed
as Sij=

1
2((Ui/(xj+(Uj/(xi). RNG theory gives values of the constants C1e=1.42 and C2e=

1.68. Equation (8) shows that ap tends to a constant value of 1.39 for fully turbulent flow at
high Reynolds number; its value is reduced for low-Reynolds-number flow and approaches
unity in the limit of laminar flow. In addition to the flow equations, the study of puff
characteristics necessitates the calculation of a passive scalar field from the conservation
equation
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where Sct stands for the turbulent Schmidt number, equal to 1/ap in RNG theory. The RNG
k–e model differs from the commonly used standard k–e model and its variants in several
ways. Constants and functions in the RNG model are evaluated by rigorous theory and not by
empiricism. The model is therefore much more generally applicable without modification.
Low-Reynolds-number effects are included in RNG theory, permitting laminar-like behaviour
to be predicted and hence making it more applicable to the partly turbulent characteristics of
puff flow. The reduced value of C2e, as compared with the value of 1.9 in the standard model,
has the interesting consequence of decreasing both the rate of production of k and the rate of
dissipation of e, leading to smaller values of neff. The new term R is related to the strain rate
for treatment of non-equilibrium effects and flows in the rapid distortion limit. In regions of
small strain rate the term R tends to increase neff somewhat, but neff is still typically smaller
than its value in the standard theory. However, in regions of large strain rate the sign of R is
changed and neff is decreased much more.

The vorticity equation for an incompressible homogeneous fluid is

(ṽi
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where ũ and ṽ stand for the instantaneous velocity and vorticity respectively. After substitut-
ing related Reynolds decompositions into this equation and taking ensemble averages of all
terms, we obtain a governing equation for the vorticity of the turbulent mean flow, V, as
follows:
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where u and v stand for the fluctuating velocity and vorticity respectively. In the limit of
two-dimensional turbulent flow the second and third terms on the right-hand side of the
equation, which account for the effect of vortex stretching, disappear. The remaining first term
((/(xj)(ujvi) has no counterpart in the equation for instantaneous vorticity (Equation (11)). As
a transport ‘divergence’ analogous to the Reynolds stress term in the momentum equation, it
is due to mean transport of the fluctuating vorticity vi through its interaction with the
fluctuating velocity uj. For turbulent flows at large Reynolds number this mechanism can be
dominant, because the vorticity fluctuation is much larger than the mean vorticity. For puff
flow this argument can be supported by another form of the mean vorticity equation obtained
by taking the curl of the momentum Equation (2) with the eddy viscosity assumption. It can
be shown from this form of the vorticity equation that, besides the mechanism of vorticity
diffusion, the inhomogeneity of the eddy viscosity distribution furnishes another mechanism
for vorticity change. The latter mechanism can be significant, as the eddy viscosity varies
substantially across the puff. That is why the vorticity field of the Reynolds-averaged puff flow
computed in the LRW study could be quite different from that deduced from classical vorticity
dynamics [9] assuming constant viscosity. It is then not surprising that certain formal
interpretations which are applicable only to the instantaneous vorticity (see e.g. Reference [10])
are irrelevant to the mean vorticity; this point will be discussed further.

2.3. Initial and boundary conditions

By virtue of the symmetry assumption, the numerical solution is sought for only half of the
flow domain, i.e. y]0. At solid boundaries the non-slip condition is imposed. On the line of
symmetry, y=0, the conditions (W/(y=0 and V=0 are imposed, where W stands for the
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vertical velocity; the normal gradients of all other variables are similarly set to zero. The fluid
properties are taken as those of water, i.e. r=103 kg m−3 and n=10−6 m2 s−1. At t=0, zero
values of horizontal velocity V and pressure are prescribed. The vertical velocity and scalar
concentration are given the values W0=1.07 m s−1 (according to M0) and C0=1 inside the
marked patch and zero elsewhere. The values of k and e for the patch are assumed to be 0.0176
m2 s−2 and 0.0509 m2 s−3 respectively, corresponding to an eddy viscosity estimated by a free
shear model nt=anW0L0, with an�0.01. For numerical reasons, negligibly small initial values
of (k, e) are given for the non-turbulent region outside the initial impulse such that ntB0.001n.
As will be seen from the numerical results below, the solution in the asymptotic stage of the
puff is rather insensitive to the initial values of k and e assumed over a reasonable range.

2.4. Similarity relations

As the flow in the enclosed system is entirely driven by the nominal impulse, the variation
puff characteristics can be written as (Wc, C, L)= f(M0, V0, C0, t), where Wc, C and L denote
the characteristic vertical velocity, concentration and length respectively and V0=L0

2 is the
initial puff volume per unit length. An appropriate non-dimensionalized variable f then
depends only on the dimensionless time t*= t/tc, where tc=V0

3/2/M0 is a characteristic time
scale that measures the effect of the initial impulse geometry. Further, if the flow becomes
self-similar, then for t*�1, dimensional analysis leads to

Wc�M0
1/3t−2/3, (13)
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1/3t1/3�L, (14)

where z is a characteristic location referred to from the initial source location, i.e. z=Z−Zb0,
and L is a characteristic dimension of the puff. Conservation of passive scalar also implies
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These relations indicate that the puff Reynolds number Re and the circulation around one half
of the puff, G, both �WcL, decrease slowly as � t−1/3. The above relations will be used to
test the self-similarity of the numerical solution.

3. NUMERICAL SOLUTION

3.1. Computational procedure and details

The governing equations are solved numerically using the finite difference method [11] as
embodied in the code FLUENT [12]. The equations are discretized on a non-staggered grid on
which Cartesian velocities and other variables are defined at the centres of control volumes. The
quadratic upwind interpolation (QUICK) approximation of Leonard [13] is used for spatial
discretization. A first-order-accurate unconditionally stable implicit scheme is used for time
discretization, with all spatial derivatives and other terms treated in a fully implicit manner. At
each time step the discretized equations are solved iteratively using the SIMPLEC algorithm for
velocity–pressure correction [14]. In all calculations no underrelaxation of pressure is required,
while a factor of 0.8 is adopted for velocities and other variables. Convergence is declared when
the normalized residuals are less than 5×10−4.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 217–234 (1998)
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A 63×146 (y–z) orthogonal grid is used for this problem of simple geometry, with the
initial source defined over 12×8 cells. The minimum grid dimensions are Dy=0.0017 and
Dz=0.005; in the region of the growing puff the grid size is no more than 0.005 m. To obtain
accurate solutions, up to 1000 time steps are used to march the solution to t*=80. In the
initial stages, 300–500 iterations are required for convergence at each time step, but for t*\3,
typically only 100–150 iterations suffice.

3.2. Flow field

The momentum source gives rise to a sharp velocity gradient (Figure 2(a)), leading to the
formation of two vortices at the lateral edges of the puff (Figure 2(b)) and an unsymmetrical
pressure distribution around the puff (Figure 2(c)). As a result of this pressure interaction, the
puff vertical momentum Mp=	p W dV drops to half of the nominal impulse at t*=0.5.

Figure 3. (a) Time variation of net pressure force (SI units) on puff. (b) Time variation of puff momentum Mp/M0

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 217–234 (1998)
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Figure 4. Computed streamlines—maximum normalized streamfunction Cm* =0.187, 0.162, 0.155, 0.156 at t*=5, 20,
40, 70 respectively. Contour interval is Cm* /10

Figure 3(a) and 3(b) show the subsequent time variation of the net pressure force Pf acting on
the puff (sum of pressures along top and bottom solid boundaries) and of Mp. It is seen that
there are significant pressure fluctuations for t*B10; thereafter Pf drops to negligible values.
The puff momentum initially decreases, then attains an asymptotic value of 0.5M0 beyond
t*�30. Figures 4–7 show the computed flow and scalar fields at selected instants during
t*=5–70. The following points may be made.

(i) The puff is characterized by a vortex-pair-like flow (Figure 4). As the flow develops, from
t*�20 onwards, a clear inflection in the flow entering the puff from the rear can be noted, due
to the appearance of a wake region of relative stagnation behind the rear of the main vortex
pair flow (Figure 5), where the flow velocity is very small or zero. The shape of the flow field
is well preserved for t*]30. The maximum magnitude of the normalized streamfunction
C*=C/(WmL) is equal to 0.187, 0.162, 0.155, 0.156 at t*=5, 20, 40, 70 respectively, where
Wm is the maximum vertical velocity in the puff. The pressure field (not shown) is also
approximately self-similar for t*]30, with the minimum pressure (non-dimensionalized by
rWm

2 /2) given by p*= −0.947 relative to initial zero value. P is positive in front of the puff,
decreases to a negative minimum around the vortex centre and then increases to positive values
at the rear of the puff.

(ii) The vorticity field (Figure 6) shows that the main body of the puff is surrounded at the
rear by a significant vorticity layer and after t*]20 is followed by a vorticity spot, all with

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 217–234 (1998)
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Figure 5. Computed velocity field with a wake region of stagnation

Figure 6. Computed vorticity field—maximum normalized vorticity (with increasing t*) hm* =8.51, 7.10, 6.47, 6.37.
All contours with a negative vorticity value are shown as broken lines. Contour interval is hm* /10

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 217–234 (1998)
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Figure 7. (a) Turbulence kinetic energy—um/Wm=0.36. (b) Eddy viscosity—ntm/(WmL)=0.016, ntm/n=400. (c)
Relative magnitude of various terms in TKE budget of puff, plotted against distance relative to front of puff (along

y=0 at t*=40)

opposite orientation. It is remarkable that the spot is related to the relative stagnation of flow
in the wake. Self-similarity is evident for t]30, with the maximum normalized vorticity
magnitude hm* =hm/(Wm/L)=8.51, 7.1, 6.47, 6.37 at the times shown. The magnitude of the
maximum opposite vorticity is less than 0.28 of that of the maximum vorticity at the vortex
centre in the self-similar stage.

(iii) The turbulence kinetic energy k and dissipation rate e (hence turbulent viscosity nt) both
display approximately preserved shapes for t*]30. Figure 7(a) shows that the region of high
TKE is located towards the front of the puff, where large spatial gradients can be noted. The
maximum values of k and e are found at the same location, namely on the centre line and
above the position of maximum vertical velocity. In the self-similar stage the maximum
turbulence intensity is um/Wm:0.36, where km=3

2 um
2 . In the main body of the puff the

turbulent viscosity (Figure 7(b)), very similar in shape to k, varies spatially by about a factor
of four, with the maximum value nt/(WmL)=0.016 and nt/n:400. The characteristic length of

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 217–234 (1998)
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the energy-containing motion, l=Cmk3/2/e, is in the range (0.02–0.04)L. A lobe of non-negligi-
ble turbulence protruding into the wake of the puff can also be clearly noted. Figure 7(c)
shows that the TKE balance of the puff is qualitatively similar to that of plane jets and wakes.
The region of maximum production is found around regions of large velocity gradients, at the
front of the puff, with significant production also towards the rear. While none of the terms
in (6) is negligible, diffusion plays a relatively minor role as compared with advection. The
front of the puff gains TKE by advection, while the converse is true towards the rear. The ratio
of the total (integrated over the puff) production of TKE to the total dissipation rate, Pr/e,
varies from 0.92 at t*=0.5 to an asymptotic value of 0.68 at t*=70.

3.3. Passi6e scalar field

Figure 8 shows the computed passive scalar field. In the initial stages a symmetrical
double-maxima pear-shaped structure is formed; the puff concentration maximum Cm, located
around the vortex centre, can be as much as 1.4 times the maximum concentration Cc is along
the centreline. This is in accord with previous observations in the bent-over phase of a jet in
crossflow. While the double peaks can be noted only for t*B20, the symmetrical double-max-
ima structure transforms into a stretched-out kidney-shaped region of high concentration. The
main body of the scalar field evolves to a rather round outline which becomes approximately
self-similar for t*\30; thereafter a secondary concentration peak (with a magnitude as much
as 0.5Cm) develops in the puff rear, resulting in an oblong concentration appendix attached to
the main body of the puff. The approximately asymptotic stage is reached when the puff has

Figure 8. Computed passive scalar field

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 217–234 (1998)
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Table I. Similarity relations derived from numerical solution (numbers refer to dimensionless coefficients
of equations or ratios; (k, e)0 in SI units)

SKE ExperimentParameter RNG 1 RNG 2 RNG 3

0.0056 0.0331Initial condi- 0.0176k0 0.0176
tions

0.0093 0.05090.1260e0 0.0509

0.505 0.502 0.3aPuff momen- Mp/M0 0.515 0.519
tum

2.17 1.90Vertical veloc- 1.90Wm=CnM0
1/3t−2/3 1.98

ity

3.08 2.92 2.6–5.7 [4]3.09Puff front zf=nR 3.16

1.59 1.54 1.51 1.44 [16]Trajectory zc=C2pM0
1/3t1/3 1.57

1.56 [3]

1.19 1.19Length scale L=C4pM0
1/3t1/3 1.18 1.17

0.85 0.950.95Centre of mass L=Ccmz 0.90

0.737 0.741 0.648Scalar concen- C0/Cm 0.722
tration =C0mM0

3/2t2/3/V0

0.29 0.28Scalar concen- 0.28C0/Cm=C3pz c
2/V0 0.29 0.35 [3]

tration

0.276 [3]0.355 0.2900.330Centreline 0.349bvc=C1pzc

halfwidth

3.623.47 3.73Wm/W 3.61

2.50 2.71 2.72Circulation G/(WL) 2.58

0.670.63Momentum 0.640.63Wp/(WL2)
factor

0.016 0.015 0.017 0.015Turbulent vis- nt/(wmL)
cosity

0.35 0.37Turbulence in- 0.36um/Wm 0.36
tensity

0.72 0.540.64Prod./diss. Pr/e 0.68

1.01 1.02 1.01 1.00–1.56Cm/Cc 1.02

aVortex ring.

grown to larger than three times its initial size. The significant turbulent viscosities computed
in the tail of the puff act to diffuse the scalar outwards into the appendix of the puff; the
strong entrainment and the stagnation in the puff rear (Figure 5) help form the secondary
concentration peak in the appendix.

Extensive tests have confirmed that the above general features are unrelated to the numerical
procedure adopted. One lower-resolution simulation on a coarser 57×130 grid was made to
validate the numerical accuracy. All the contour plots are very similar to the high-resolution
results, and differences for all the non-dimensional parameters presented in Table I are limited
to at most 4%. Combined with our previous extensive SKE simulation in the LRW study, we
are reasonably assured that the numerical results represent an accurate simulation of the puff
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problem. In any case, the present results have captured the essentially self-similar flow during
the time when most of the changes take place.

3.4. Puff characteristics

To investigate the self-similarity more fully, a large number of puff characteristics are
computed at each time step. The maximum vertical velocity (Figure 9(a)) and maximum scalar
concentration (Figure 9(b)) satisfy well the −2/3 similarity law (Equations (11) and (13)) for
t*]30 and 20 respectively. Figures 9(c) and 9(d) show the variation of the vertical location of
the puff front, zf, with time and with the maximum horizontal radius R respectively. Both zf

and R are defined by the 0.01Cm contour. It can be seen that the puff front follows the 1/3
power law (Equation (12)) for t*]20. The puff front location varies linearly with R, with a
slope of about three in the asymptotic stage. In experiments it is often expedient to measure
a concentration transverse along the centreline. The location of the centreline concentration
maximum Cc, zc, also varies linearly with the halfwidth bvc, defined by the e−1Cc points along
the centreline. The similarity relations in the asymptotic stage t*\30 are summarized in Table
I. Also shown are the ratio of the maximum to the mass-weighted average vertical velocity,
Wm/W, and the circulation around one half of the puff, defined as G=	H

0 W(0, z) dZ. The
dimensionless results are virtually the same for a source with half of the strength assumed
herein. Table I also shows that the mean flow properties of the self-similar puff are rather
insensitive to the exact initial conditions of k and o assumed within a reasonably wide range for
the puff. Defining the puff by the 0.05Cm contour also produced negligible changes in the puff
front and length relations.

4. DISCUSSION

In summary, the numerical results strongly support the concept of similarity for the puff flow;
the transition to self-similarity lies in the range t*=25–30. The computed variation of the puff

Figure 9. Time variation of puff properties: (a) maximum vertical velocity; (b) scalar concentration; (c) vertical
location of puff front. (d) Puff front versus maximum horizontal radius. (See Table I for equations)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 217–234 (1998)
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Figure 10. Computed fields of strain rate (SI units) distribution via (a) RNG model and (b) SKE model

front (Figures 9(c) and 9(d)) closely resembles the data of a previous experiment on line puffs
[4]. In that experiment a short pulsed jet was generated by impulsively releasing water at excess
head from a puffer into a tank. Although the initial momentum loss was not measured, the
computed large pressure transients are in accord with the observed fluctuations in free surface
level in the water tank and within the puffer. The substantial loss of nominal impulse is also
supported by a study of vortex rings [15] in which the initial dimensionless momentum of the
vortex ring was found to be about 0.3. The asymptotic value of 0.5 for the puff momentum,
a fundamental property, can also be interpreted as an added mass of the unsteady puff motion
[16,17], implying an added mass coefficient of unity. Half of the nominal impulse accounts for
the approximately irrotational flow of the surrounding fluid set up by the moving puff.

The computed flow (Figure 4) is very similar to the observed mean fluid motion of the puff
measured from particle tracks (Figure 6 of Reference [4]), although the flow inflection towards
the rear of the puff cannot be noted in the experiment. For the measured flow the puff
front/radius ratio is n=3.4 and the flow outside the puff can be closely approximated by the
potential flow due to a line doublet of strength 0.034z f

2 dzf/dt per unit length. Our calculations
show that dzf/dt:0.45Wm. Using the observed n and our computed value of Wm/W (Table I),
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the observations imply a doublet strength m=0.64WR2. On the other hand, analysis of the
computed velocity field reveals that the outside flow can be closely approximated by that due
to a doublet with m=0.63WR2. This close agreement provides another quantitative confirma-
tion of the numerical solution.

The computed spreading rate of the puff defined by zf (Table I and Figure 1(b)), n=3.16,
lies within the observed range of 2.6–5.7. The large variation of the measured n could be
related to the experimental difficulty of generating puffs of short pulse duration. The value of
n:3, the same as that observed by Tsang [18] in his study of thermals, appears to be more
consistent with the observation that the puff flow is very similar to the line thermal flow.

Additional insights into the mixing of puffs can be gained from the present results. It can be
shown that almost all the fluid presented to the puff cross-section is entrained into the puff, a
result which can also be deduced from the experimental data of line thermals [19]. The
entrainment coefficient a as used in models employing the entrainment assumption [17] can
also be deduced to be 0.32, the use of which yields velocities close to that computed,
Cn=1.90–2.17. This value of a can be compared with the range of 0.25–0.67 obtained by Chu
[16] in an analysis of previous data.

In Table I we also compare the puff trajectory and mixing rate with recent experiments of
advected line puffs [3]. In those experiments an advected line puff was simulated by discharging
a near-vertical round jet at zero excess horizontal momentum into a horizontal crossflow; the
horizontal component of the initial jet velocity was made equal to the ambient velocity.
Time-averaged scalar concentration measurements can be conveniently carried out in the
cross-section of these puffs. The measured puff spreading rate as defined by the centreline
halfwidth is 0.276 and the trajectory constant is C2p=1.56. Compared with the corresponding
computed values of 0.349 and 1.57 respectively, the data lend support to the use of the RNG
model for the study of puff mixing. In experiments the ratio of the maximum concentration to
the maximum centreline concentration, Cm/Cc, varied in the range of 1–1.56. Taking a mean
value of Cm/Cc of 1.3, the measured centreline dilution constant of 0.46 translates to a
minimum dilution constant of 0.35. This compares with the computed puff mixing rate
C3p=0.29 (Table I), where C0/Cm=C3pz c

2/V0. We also note that the dilution constant is
sensitive to small errors in zc.

5. COMPARISON WITH RESULTS FROM STANDARD k–e (SKE) MODEL

As a comparison, a similar numerical experiment is performed using the standard k–e model
[20] for case 1, with the scalar concentration equation adopting a constant value of Sct equal
to 0.75, as found appropriate for related computations [3,10]. As shown in Table I, the
computed puff parameters are very close to those obtained by the RNG model. The notable
exception is that the predicted spreading rate of centreline halfwidth by the standard model is
noticeably smaller by about 20%. Although the overall mixing characteristics do not appear to
be affected by the alternative turbulence model hypothesis, there are some notable differences
in the computed flow field. Close examination of the standard model results (not shown)
indicates a milder puff momentum response with time (possibly due to somewhat overpre-
dicted diffusion); some flow details, such as the relative stagnation in the wake and the
entrainment in the rear, are also somewhat suppressed. This smoothing effect can be clearly
discerned in Figure 10, which compares the strain rate distributions computed by the two
models. At the same time the strain rate from the RNG model is generally greater than that
from the SKE model, corresponding to the smaller neff computed by the RNG formulation. A
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Figure 11. (a) Turbulence kinetic energy and (b) eddy viscosity via SKE model

similar tendency is true for the turbulence kinetic energy and turbulent viscosity, as shown in
Figure 11.

The most significant difference between the predictions of the two models is in the passive
scalar field (Figure 12). The scalar field contours obtained from the standard model, very
similar to those reported in the LRW study, show a similar shape of the main puff body and

Figure 12. Computed passive scalar field via SKE model
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a small wake of insignificant concentration, possibly due to the weaker stagnation. On the
other hand, the RNG model (Figure 8) shows a moving puff in which part of the ‘coloured’
patch is ‘detrained’ or deposited into a long appendix or wake, apparently due to the much
stronger entrainment and stagnation found in that region.

6. CONCLUDING REMARKS

The mixing of unsteady line puffs has been studied using the renormalization group (RNG)
model. The salient features of the predicted flow and scalar mixing rates are very similar to
those obtained by the standard k–e model and are well supported by experimental data.
However, the predicted scalar field differs in detail from the measurements in the flow
analogue of an advected puff. Some of the flow details remain to be clarified by future
experiments.

Our comparative numerical study shows several features which do not seem to be dependent
on the turbulence model adopted: (i) the absence of concentration double peaks in the
developed stage, in contrast with the bifurcated scalar field one often assumes in the bent-over
jet in crossflow; (ii) the diffusion of turbulence energy and passive scalar into the wake; (iii) the
generation of vorticity tails of opposite orientation in the puff rear, due to spatial inhomo-
geneities in the turbulent viscosity. Nevertheless, the RNG model computes a much stronger
stagnation region and concentration appendix in the puff rear. The present results also suggest
that streamline curvature effects (or high strain rates) around the vortex cores, which may not
be described adequately by the standard model, play a relatively minor role as far as the major
puff mixing characteristics are concerned. The puff flow is mainly governed by the large-scale
motion as implied by the similarity relations.
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